## Bachelor of Science with a Major in Physics

## Selected Educational Outcomes

The program leading to the Bachelor of Science degree with a major in physics is designed to prepare students to enter graduate programs in physics or in astronomy, or to embark upon careers in government, industry, or education. Examples of these outcomes include the following:

1. students will demonstrate knowledge in the fundamental branches of physics: mechanics, electromagnetism, and quantum mechanics;
2. students will demonstrate knowledge in several elective areas within the field of physics, including (but not limited to) thermodynamics, electronics, optics, and computational physics;
3. students will apply the techniques of mathematical analysis (algebra, geometry, trigonometry, and calculus) to physical problems;
4. students will effectively use computers and calculators for scientific calculation, programming, and word processing.

## Examples of Outcome Assessments

Assessment of the education outcomes for the physics major is primarily the responsibility of the departmental Physics Area Committee, comprised of faculty with expertise in physics and cognate disciplines. The Committee assesses the extent to which the program requirements create the desired outcomes by using a variety of techniques. Examples of these assessments include the following:

1. All student majors must make oral presentations of their research results to the departmental faculty and submit written copies of their research papers to the departmental office as part of the required Capstone Seminar (PHYS 4501).
2. Students must submit a departmental copy of their portfolios of undergraduate coursework, research projects, and professional activity at the end of their last semester of residence.
3. At the time of major coursework completion, students must complete an exit questionnaire to determine the students' perception of achievement of the major's educational outcomes.
4. Periodic surveys of alumni who have completed the physics program will be conducted to evaluate the relevancy of the major program to graduates' present employment, their perception of success, and their personal satisfaction with the program. The surveys will also solicit suggestions for improvement of the physics major program.

## Requirements for the Bachelor of Science Degree with a Major in Physics




## Requirements for the Bachelor of Science Degree with a Major in Physics--Applied Physics Track

| Code | Title | Hours |
| :---: | :---: | :---: |
| Core Curriculum |  | 60 |
| Core Curriculum Areas A-E (See VSU Core Curriculum) |  | 42 |
| Physics majors are required to take MATH 1113 in Area A and MATH 2261 in Area D.2. They are advised to take PHYS 2211K and PHYS 2212K in Area D. 2. |  |  |
| Core Curriculum Area F ${ }^{1}$ |  |  |
| PHYS 2700 | Modern Physics | 1 |
| CS 1301 | Principles of Programming I | 4 |
| MATH 2262 | Analytic Geometry and Calculus II | 4 |
| MATH 2263 | Analytic Geometry and Calculus III | 4 |
| MATH 2261 | Analytic Geometry and Calculus I (1 hour left over from Area D) | 4 |
| Select one of the following sequences: |  | 4 |
| CHEM 1211 <br> \& 1211L | Principles of Chemistry I and Principles of Chemistry Laboratory I |  |
| $\begin{aligned} & \text { BIOL } 1107 \\ & \text { \& 1107L } \end{aligned}$ | Principles of Biology I and Principles of Biology Laboratory I |  |
| Senior College Curriculum |  | 60 |
| Required Courses ${ }^{2}$ |  | 33 |
| CS 1302 | Principles of Programming II | 4 |
| Select one of the following sequences: |  | 4 |
| CHEM 1212 <br> \& 1212L | Principles of Chemistry II and Principles of Chemistry Laboratory II |  |
| $\begin{aligned} & \text { BIOL } 1108 \\ & \& 1108 \mathrm{~L} \end{aligned}$ | Principles of Biology II and Principles of Biology Laboratory II |  |
| PHYS 3040 | Electronics | 4 |
| PHYS 3100 | Optics | 4 |
| PHYS 3820 | Computational Physics I | 4 |
| PHYS 4040 | Experimental Physics | 4 |
| PHYS 4111 | Theoretical Mechanics I | 3 |
| PHYS 4211 | Electromagnetism I | 3 |
| PHYS 4411 | Quantum Mechanics I | 3 |
| Supporting Courses and Electives |  | 27 |
| MATH Electives: Select two from the following courses: |  | 6 |
| MATH 2150 | Introduction to Linear Algebra |  |
| MATH 3040 | Set Theory |  |
| MATH 3340 | Ordinary Differential Equations |  |
| MATH 3600 | Probability and Statistics |  |


| MATH 4150 | Linear Algebra |  |
| :---: | :---: | :---: |
| MATH 4260 | Mathematical Analysis |  |
| MATH 4300 | Functions of a Complex Variable |  |
| MATH 4540 | Topology |  |
| Modern Foreign Language (3 hours m | may be taken in Area C) | 3-6 |
| Other Guided Electives |  | 15-18 |
| BIOL 3200 | Introductory Genetics |  |
| BIOL 3250 | Ecology and Evolution |  |
| BIOL 3350 | Environmental Science |  |
| BIOL 3450 | Animal Physiology |  |
| BIOL 3460 | Human Physiology |  |
| BIOL 3610 | Dendrology |  |
| BIOL 3650 | Plant Systematics |  |
| BIOL 3680 | Plant Pathology |  |
| BIOL 3700 | Neuroscience |  |
| BIOL 3810 | Introduction to Biogeography |  |
| BIOL 4100 | Morphology of Land Plants |  |
| BIOL 4250 | Human Anatomy |  |
| BIOL 4450 | Theory and Practice of Scanning Electron Microscopy |  |
| BIOL 4850 | Biology Internship |  |
| BIOL 4950 | Directed Study |  |
| CHEM 2210 | Sophomore Seminar |  |
| CHEM 2310 | Quantitative Analysis |  |
| CHEM 3320 | Environmental Chemistry |  |
| CHEM 3401 | Organic Chemistry I |  |
| CHEM 3402 | Organic Chemistry II |  |
| CHEM 3510 | Inorganic Chemistry |  |
| CHEM 3601 <br> \& 3601L | Biochemistry I and Laboratory Techniques in Biochemistry |  |
| CHEM 3602 | Biochemistry II |  |
| CHEM 3801 | Physical Chemistry I |  |
| CHEM 3802 | Physical Chemistry II |  |
| CHEM 4210 | Seminar |  |
| CHEM 4310 | Instrumental Analysis |  |
| CHEM 4420 | Physical Organic Chemistry |  |
| CHEM 4810 | Computational Chemistry |  |
| CHEM 4920 | Special Topics |  |
| CS 1010 | Algorithmic Problem Solving |  |
| CS 3101 | Computer Organization |  |
| CS 3102 | Assembly Language |  |
| CS 3300 | UNIX Programming |  |
| CS 3335 | The C Programming Language |  |
| CS 3340 | Web Programming |  |
| CS 3410 | Data Structures |  |
| CS 3520 | Algorithms |  |
| CS 4121 | Data Communications and Networks I |  |
| CS 4122 | Data Communications and Networks II |  |
| CS 4321 | Software Engineering I |  |
| CS 4322 | Software Engineering II |  |
| CS 4340 | Systems Programming |  |
| CS 4721 | Database Design I |  |
| CS 4722 | Database Design II |  |

1
All core science and math courses must be completed with a grade of " C " or better.
2
Students must complete at least 39 credit hours of upper-level (3000-4999) courses.

## Requirements for the Bachelor of Science Degree with a Major in Physics--Medical Physics Track



| CHEM 3402 | Organic Chemistry II |
| :---: | :---: |
| CHEM 3510 | Inorganic Chemistry |
| $\begin{aligned} & \text { CHEM } 3601 \\ & \& 3601 \mathrm{~L} \end{aligned}$ | Biochemistry I and Laboratory Techniques in Biochemistry |
| CHEM 3602 | Biochemistry II |
| CHEM 3801 | Physical Chemistry I |
| CHEM 3802 | Physical Chemistry II |
| CHEM 4210 | Seminar |
| CHEM 4920 | Special Topics |
| PHYS 3820 | Computational Physics I |
| PHYS 4040 | Experimental Physics |
| PHYS 4112 | Theoretical Mechanics II |
| PHYS 4212 | Electromagnetism II |
| PHYS 4412 | Quantum Mechanics II |
| PHYS 4800 | Internship in Physics |
| PHYS 4950 | Directed Study in Physics |
| MATH 1112 | Trigonometry |
| MATH 3040 | Set Theory |
| MATH 3600 | Probability and Statistics |
| MATH 4081 | Modern Algebra I |
| MATH 4260 | Mathematical Analysis |
| MATH 4621 | Mathematical Statistics I |
| MATH 4990 | Special Topics in Mathematics |
| Total hours required for the degree |  |
| 1 <br> All science and math courses must be completed with a grade of " C " or better. <br> 2 <br> Students must complete at least 39 credit hours of upper-level (3000-4999) courses. |  |
|  |  |
|  |  |

