Bachelor of Science in Computer Science

Selected Educational Outcome

1. Students will design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
2. Students will demonstrate ability to use current techniques, skills, and tools necessary for computing practice.
3. Students will apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the trade-offs involved in design choices.

Examples of Outcome Assessments

The department assesses the extent to which the program requirements create the desired outcomes by a variety of techniques. Examples of these assessments include the following:

1. The capstone courses are used to assess student progress since taking Area F courses. They determine if students have mastered effective oral and written communication skills, acquired critical analysis skills, and learned to use the library and technological resources in solving non-routine problems. Assessment methods include student projects and presentations.
2. Student examinations and samples of student work are kept in the department and are examined by the faculty to assess student content knowledge.
3. Available student and alumni survey data collected by the University will be examined to determine student satisfaction with their undergraduate preparation for further education or employment.

Requirements for the Bachelor of Science Degree with a Major in Computer Science Code Title Hours

Core Curriculum 60

Core Curriculum Areas A-E (See VSU Core Curriculum) 42
Majors in Computer Science are required to take MATH 1112 or MATH 1113 or MATH 2261 in Area A and MATH 2261 or MATH 2262 in Area D
Core Curriculum Area F 18
CS 1301 Principles of Programming I 4
CS 1302 Principles of Programming II 4
CS 2620 Discrete Structures 3
MATH $2261 \quad$ Analytic Geometry and Calculus I (1 hour "spillover" from Area D) 1
MATH 2262 Analytic Geometry and Calculus II 4
Any D.2.a or D. 1 Laboratory Science from a different discipline than the sequence completed in D.2.a (with 2 hours "spilling" into Supporting 2
Courses) or ENGR 2320 (with 1 hour "spilling" into Supporting Courses)
Senior College Curriculum 60
CS 3200 Computer Ethics 3
CS 3101 Computer Organization 3
CS 3335 The C Programming Language 3
CS 3410 Data Structures 3
CS 3520 Algorithms 3
CS 4345 Operating Systems 3
CS 4121 Data Communications and Networks I 3
CS 4321 Software Engineering I 3
CS 4721 Database Design I 3
CS $4500 \quad$ Formal Languages and Automata Theory 3
CS 4900 Senior Seminar 3
Additional 3000-level or 4000-level course in CS (except CS 4800) 3
Additional 4000-level course in CS (except CS 4800) 3
Supporting Courses 11
D.2.a Laboratory Science ("spillover" from Area F)

MATH $2150 \quad$ Introduction to Linear Algebra

MATH 3600	Probability and Statistics	
MATH 4651	Numerical Analysis I	
or MATH 4901	Operations Research I	
Electives		10
Total Hours Required for the Degree	120	

Additional Notes

1. The 12-hour lab science requirement must include a two-course sequence. All three courses must be from Area D.2.a. Students not completing these requirements in their Core Curriculum must complete them with elective courses.
2. Students must receive a "C" or better in all of the lower division mathematics and computer science courses completed to satisfy the degree requirements.
